Games
Problems
Go Pro!

Digits in a Multiplication Problem

Pro Problems > Math > Number and Quantity > Number Theory > Digits
 

Digits in a Multiplication Problem

You must use each of the integers from 0 to 5 exactly once to fill in the blanks in the multiplication problem below.

_ _ _ x _ _ x _ = 

What is the largest possible value you can create?

Presentation mode
Problem by Mr. Twitchell

Solution

In order to make it feasible for teachers to use these problems in their classwork, no solutions are publicly visible, so students cannot simply look up the answers. If you would like to view the solutions to these problems, you must have a Virtual Classroom subscription.
Assign this problem
Click here to assign this problem to your students.

Similar Problems

Fiona's Telephone Number

When Shrek asks Fiona for her telephone number, Fiona is a bit coy about it, and tells Shrek the following information:

  • My telephone number has 10 digits.
  • There are no repeated digits in my telephone number.
  • The first three digits are in ascending order.
  • The second three digits are in descending order.
  • Both the last four digits and the last two digits are multiples of sixty.
  • My last four digits are not a multiple of 43.
  • My first three digits are the square of an integer less than twenty.
  • The sum of the second three digits is 14.

What number should Shrek dial?

Back to Back

X is a three-digit number. Y is the number obtained when the digits of X are reversed. Z is the six-digit number obtained by writing X and Y back to back, with X written first. W is the six-digit number obtained by writing Y and X back to back, with Y written first. What is the largest number which the sum of Z and W must be divisible by?

 

Happy New Year

Happy New Year! I am a four-digit year, and my last two digits are a perfect square. The sum of my first and third digits is a perfect square. My second digit is a perfect square. All my digits add to a perfect square.

If you subtract my first, second, and third digit from my last digit, you get a perfect square.

If you subtract my third digit from my first digit, you get a perfect square.

Oh, by the way, I'm a perfect square.

What year am I?

Three Digits, sum and product

I'm a three digit number. My first two digits multiply to 12, and my last two digits add to 14. What number am I?

Two Digit Pattern Matching

How many two-digit numbers are there such that the digits match at least one of the following patterns:

  1. The digits are both multiples of three.
  2. Neither of the digits are multiples of two.
  3. The digits add to 8.
  4. The digits are perfect squares.

Three Digit Number

I'm thinking of a three-digit number. The sum of its digits is between 15 and 20 exclusive. The product of my first and last digits is 18. I don't have any repeated digits, and my digits are not in either ascending order or descending order. I am a multiple of three, but not of six. What number am I?
 

Find the Number

My digits are all odd, and they add to 18. My first digit is four more than my last digit, the product of my digits is between 300 and 315, and I am less than 100,000. If my digits are not in descending order, what numbers could I be?

Palindrome Addition

Find the smallest positive integer which must be added to 30504 so that the resulting number is a palindrome.

Note: a palindrome is a number in which the digits would read the same forward and backward.

 

Three Digit Number

I am thinking of a three-digit number. The sum of my digits is 17. Two of my digits add to 10, and two of my digits are the same. Find all possible values for my number.
 

Sum of Digits

Find the sum of all the integers between one and 100 which have 14 as the sum of their digits.

Three Digit Difference, Grapes on the Vine, Three Digits with Difference, Rhonda's Zip Code, Five Digit Number, I Have Three Digits, Reverse Me, Fill in the blanks, Set of Five Digit Numbers, Coffee Math, Four Digit Number, My Three Digits, The Middle Palindrome, All My Digits

Blogs on This Site

Reviews and book lists - books we love!
The site administrator fields questions from visitors.
Like us on Facebook to get updates about new resources
Home
Pro Membership
About
Privacy